
Service Desk
Automation using
Machine Learning

Ryan Rosiak
Intern at JP Morgan Chase

COSC 380-001

● An American multinational investment bank and financial services holding company
○ Multinational

■ Operate in over 60 countries
■ Over 240,000 employees

○ Investment Bank
■ Advisory based regulated transactions on behalf of individuals, corporations, and

governments (Mergers, Acquisitions, Trading, etc)
○ Financial Services

■ Manage money
○ Holding Company

■ Owns shares in other companies (Parent Company)
■ Manage assets of owned companies

Who is JP Morgan Chase?

Fun Fact: JP Morgan Chase is the 3rd largest bank in the
world controlling over $3.68 trillion dollars in assets

● Consumer and Community Banking Division
○ Banking with the direct public (Chase credit cards, Websites, Mobile Banking, etc)

● Architecture and Data Engineering
○ Tech division

● Photon Framework Team
○ Internal framework that provides a layer of standard features on top of backend

architecture (DPL, Database, Auth, etc)

● Team of 4 interns
○ Team name: NP-Compete

My Role

● Photon team receives roughly 130 support tickets per sprint
● Framework usage increasing -> Ticket rate rapidly increasing
● 90% of tickets fall under consultation

○ Problems solved by:
i. Pointing customer to correct documentation (approx. 82%)
ii. 1:1 walkthrough

● 5 engineers on support
○ Do not want to add more!!!

● Less engineers on support -> More engineers developing new features

The Problem

● Implement service desk automation using Jira bot
○ Support requests submitted through Jira

● Jira bot replies to support requests on Jira
● Two part answers to support requests:

○ Use NLP to provide a targeted answer (Title, Description, Version(s) Affected)
○ Use tagged components from request to provide default answer

● NLP answer will provide a link to
○ Documentation
○ Previous ticket threads
○ KB articles

● Default answers will provide a link to
○ Documentation

The Solution

E2E Project Flow Example

1. Add targeted answer functionality to Jira bot using machine learning

2. Build curated test data to validate model of choice

3. Provide default answer based on components selected

4. Deploy to GAP 3.0 to be used by developers

Team Goals

Timeline

Researching
● NLP libraries

○ NLTK
○ Huggingface
○ Gensim

● Machine Learning NLP concepts
○ Word Vectorization

● Machine Learning NLP models
○ Doc2Vec/Word2Vec ← Picked this one
○ Bert/ElasticSearch
○ Chatterbot
○ Rasa

● Model algorithms and infrastructure

The Algorithm/Model
● What is Doc2Vec?

○ Unsupervised ML algorithm trained on unlabeled strings

○ Assign numeric value to document of strings

○ Find “most similar” documents by finding the smallest distances

● Why was Doc2Vec picked?

○ Algorithmic logic already written (Only write business logic)

○ Allowed for easy training and updating of model

○ Performed the best under problem domain (Non-restricted input)

● Parameters: CBOW, Sampling alg, min_count, window_size, vector_size

The Algorithm/Model Continued
● Steps:

1. Create unique word vectors and unique paragraph id vectors from vocab

2. Determine context of each word using CBOW and create context vectors

3. Concatenate context vectors with paragraph id vectors to make a paragraph vector

4. Save paragraph vector for each string

5. Add all paragraph vectors together to determine document value

6. Use cosine difference to find closest numeric document on hyperplane

Writing Software

● **All software written in Python**

● Independent modules for interacting with model

○ Creating/Training/Saving/Loading the model

● Generating graphs and metrics for model

● Optimizing code

○ Multithreading

● Unit tests

● Generating bot responses

● Interacting with Jira API and Jira webhook

● Loading modules onto bot

● Writing configuration files

○ Deployment

Deploying
● What is GAP? (Gaia Application Platform)

○ A platform to run your application asynchronously “forever”
○ Prototype → Production quickly!!!!
○ Creates a container of your app with everything it needs installed
○ Industry grade security
○ Compatibility with most frameworks and database systems

● Updating manifest file

○ Adding dependencies

● Configuring for python project

● Reading A LOT of logs!!!

● Configuring code for production environment

● Managing credentials
○ EPV-AIM
○ MariaDB credentials

Endnotes

What I Learned
● Python in a real world environment

○ Multithreading
○ Writing tests / Debugging
○ NLP libraries

● Database management (MariaDB)
● Implementing a complex ML model

○ Algorithm analysis

● Adding features to an existing codebase
○ Reading others code

● Industry standard applications
○ Jira workflow, Confluence, Bitbucket

● Writing documentation
● Development practices

○ Whiteboard
○ Kanban boards (Scrum)

● Development environment / Working on a team

Challenges I Faced

● Learning new concepts

● Debugging

○ Software

○ Logs

● Presenting

○ Photon team

○ Upper management

● Remote workflow

● Managing connections

Classroom Experience Influence

● Debugging projects (All CS courses)

● Algorithm Analysis (220/320)

● ML fundamentals (311)

● Database (SQL) fundamentals (386)

● Programming fundamentals (All CS courses)

● Problem solving (All CS and Math courses)

Any
Questions?

	Slide 1: Service Desk Automation using Machine Learning
	Slide 2: Who is JP Morgan Chase?
	Slide 3: My Role
	Slide 4: The Problem
	Slide 5: The Solution
	Slide 6: E2E Project Flow Example
	Slide 7: Team Goals
	Slide 8: Timeline
	Slide 9: Researching
	Slide 10: The Algorithm/Model
	Slide 11: The Algorithm/Model Continued
	Slide 12: Writing Software
	Slide 13: Deploying
	Slide 14: Endnotes
	Slide 15: What I Learned
	Slide 16: Challenges I Faced
	Slide 17: Classroom Experience Influence
	Slide 18: Any Questions?

