Service Desk Automation using Machine Learning

Ryan Rosiak Intern at JP Morgan Chase COSC 380-001

Who is JP Morgan Chase?

- An American multinational investment bank and financial services holding company
 - Multinational
 - Operate in over 60 countries
 - Over 240,000 employees
 - Investment Bank
 - Advisory based regulated transactions on behalf of individuals, corporations, and governments (Mergers, Acquisitions, Trading, etc)
 - Financial Services
 - Manage money
 - Holding Company
 - Owns shares in other companies (Parent Company)
 - Manage assets of owned companies

Fun Fact: JP Morgan Chase is the 3rd largest bank in the world controlling over \$3.68 trillion dollars in assets

My Role

- Consumer and Community Banking Division
 - Banking with the direct public (Chase credit cards, Websites, Mobile Banking, etc)
- Architecture and Data Engineering
 - $\circ \quad \text{Tech division} \quad$
- Photon Framework Team
 - Internal framework that provides a layer of standard features on top of backend architecture (DPL, Database, Auth, etc)
- Team of 4 interns
 - Team name: NP-Compete

The Problem

- Photon team receives roughly 130 support tickets per sprint
- Framework usage increasing -> Ticket rate rapidly increasing
- 90% of tickets fall under consultation
 - Problems solved by:
 - i. Pointing customer to correct documentation (approx. 82%)
 - ii. 1:1 walkthrough
- 5 engineers on support
 - Do not want to add more!!!
- Less engineers on support -> More engineers developing new features

The Solution

- Implement service desk automation using Jira bot
 - Support requests submitted through Jira
- Jira bot replies to support requests on Jira
- Two part answers to support requests:
 - Use NLP to provide a targeted answer (Title, Description, Version(s) Affected)
 - Use tagged components from request to provide default answer
- NLP answer will provide a link to
 - Documentation
 - Previous ticket threads
 - KB articles
- Default answers will provide a link to
 - Documentation

E2E Project Flow Example

Team Goals

- 1. Add targeted answer functionality to Jira bot using machine learning
- 2. Build curated test data to validate model of choice
- 3. Provide default answer based on components selected
- 4. Deploy to GAP 3.0 to be used by developers

Timeline

Researching

• NLP libraries

- NLTK
- Huggingface
- o Gensim
- Machine Learning NLP concepts
 - $\circ \quad \text{Word Vectorization} \\$
- Machine Learning NLP models
 - **Doc2Vec**/Word2Vec \leftarrow Picked this one
 - Bert/ElasticSearch
 - Chatterbot
 - o Rasa
- Model algorithms and infrastructure

The Algorithm/Model

- What is Doc2Vec?
 - Unsupervised ML algorithm trained on unlabeled strings
 - Assign numeric value to document of strings
 - Find "most similar" documents by finding the smallest distances
- Why was Doc2Vec picked?
 - Algorithmic logic already written (Only write business logic)
 - Allowed for easy training and updating of model
 - Performed the best under problem domain (Non-restricted input)
- Parameters: CBOW, Sampling alg, min_count, window_size, vector_size

The Algorithm/Model Continued

Writing Software

- **All software written in Python**
- Independent modules for interacting with model
 - Creating/Training/Saving/Loading the model
- Generating graphs and metrics for model
- Optimizing code
 - Multithreading
- Unit tests
- Generating bot responses
- Interacting with Jira API and Jira webhook
- Loading modules onto bot
- Writing configuration files
 - Deployment

Deploying

- What is GAP? (Gaia Application Platform)
 - A platform to run your application asynchronously "forever"
 - $\circ \quad \mathsf{Prototype} \rightarrow \mathsf{Production} \ \mathsf{quickly} !!!!$
 - Creates a container of your app with everything it needs installed
 - Industry grade security
 - Compatibility with most frameworks and database systems
- Updating manifest file
 - Adding dependencies
- Configuring for python project
- Reading A LOT of logs!!!
- Configuring code for production environment
- Managing credentials
 - EPV-AIM
 - MariaDB credentials

Endnotes

What I Learned

- Python in a real world environment
 - \circ Multithreading
 - \circ Writing tests / Debugging
 - NLP libraries
- Database management (MariaDB)
- Implementing a complex ML model
 - Algorithm analysis
- Adding features to an existing codebase
 - Reading others code
- Industry standard applications
 - Jira workflow, Confluence, Bitbucket
- Writing documentation
- Development practices
 - Whiteboard
 - Kanban boards (Scrum)
- Development environment / Working on a team

Challenges I Faced

- Learning new concepts
- Debugging
 - Software
 - Logs
- Presenting
 - Photon team
 - Upper management
- Remote workflow
- Managing connections

Classroom Experience Influence

- Debugging projects (All CS courses)
- Algorithm Analysis (220/320)
- ML fundamentals (311)
- Database (SQL) fundamentals (386)
- Programming fundamentals (All CS courses)
- Problem solving (All CS and Math courses)

